top of page

Data Analysis of Tensile Test Data

Force and Displacement data obtained from tension test of a dual-phase advanced high strength steel
was analyzed to obtain mechanical properties of the material.

​

Software Used: MATLAB

​

Dimensions of the specimen:
Width≔6.5 mm
Thickness≔1.38 mm
Ao = Original_Area≔Width⋅Thickness=8.97 mm2
lo = Original Gage Length =25.46 mm

​

Following formulas were used to obtain necessary properties/plots:
 

​

​

formulae.JPG

MATLAB code was generated to analyze a data containing 600 data points and required graph was plotted as shown below:

Corrected SS Curve.jpg

Results are as follows:

​

  • Elastic Modulus, E = 135.33 GPa

  • 0.2% offset yield strength = 731.7 MPa

  • Resilience = 3.56 N.mm/mm2

  • Ultimate Tensile Strength = 979.3 MPa

  • Elongation = 17.59%

  • Toughness = 158.87 N.mm/mm2

  • Elastic Strain recovered = 0.007 mm/mm

  • Plastic Strain remaining = 0.033 mm/mm

  • New Gage Length = 26.30 mm

MATLAB Code:​

​

%MSEN 625 Project 1
w=6.5; %Initial Width, mm
t=1.38; %Initial Thickness, mm
lo=25.46; %Initial gage length, mm
Ao=w*t; %Initial Area, mm

Data = [
    0.000    0.000
494.297     0.004
632.523     0.004
737.398     0.001
833.917     0.001
924.378     0.007 ...
...7104.432    4.345
7046.074    4.359
6983.672    4.372
6917.775    4.387
373.945     4.479];

​

Engg_SS = [Data(:,1)/Ao Data(:,2)/lo]; %Data for Engineering Stress Strain Curve.

plot(Engg_SS(1:599,2),Engg_SS(1:599,1)); %Plotting engineering SS curve
hold on;

%Calculating True Stress Strain Values:
True_SS(505,2)=0;
for i=1:505
    True_SS(i,1) = (Engg_SS(i,1)*(1+Engg_SS(i,2)));
    True_SS(i,2) = log(1+Engg_SS(i,2));
    i=i+1;
end
plot(True_SS(:,2),True_SS(:,1));%Plotting True SS Curve
hold on;

%Calculating Material Properties:
    %Selecting Two Points in the elastic region of the curve
    x1=0.0002749;
    y1 = 103.1;
    x2 = 0.003255;
    y2 = 506.4;

    E=(y2-y1)/(x2-x1); %Young's Modulus
    
    %Plotting line for Young's Modulus
    x=0.002:0.000001:0.009;
    y=E*(x-0.002);
    hold on;
    plot(x,y,'r');
    hold on;
    YS = 731.7; %Yield Strength, MPa
    
    for j=1:600
        if(Engg_SS(j,1) <= 731.7)
            Res(j,1)=Engg_SS(j,1);
            Res(j,2)=Engg_SS(j,2);
        else
            break
        end
    end
    %plot(Res(:,2),Res(:,1),'c'); PLOT TO CHECK RESILIANCE AREA
    %hold off;
    
    Resilience=trapz(Res(:,2),Res(:,1));
    UTS=max(Engg_SS(:,1));
    Toughness=trapz(Engg_SS(1:599,2),Engg_SS(1:599,1));
    Elongation=max(Engg_SS(:,2));
    
    %Unloading curve
    hold on;
    %xu=[0.04 0.04];
    %yu=[0 1000];
    %plot(xu,yu);
    
    yun2=951.4;
    xun2=0.04;
    xun1=(E*xun2-951.4)/E;
    plot([xun1 xun2],[0 yun2]);
    Elastic_Recovery=0.04-xun1;
    Plastic_strain=xun1;
    
    %Print all Values:
    E
    YS
    UTS
    Elongation
    Resilience
    Toughness
    Elastic_Recovery
    Plastic_strain
    New_Gage_Length = lo*(1+xun1)
    hold off;

​

© 2020 by Akash Sali

bottom of page